E-theory for C∗-algebras over Topological Spaces
نویسندگان
چکیده
We define E-theory for separable C∗-algebras over second countable topological spaces and establish its basic properties. This includes an approximation theorem that relates the E-theory over a general space to the E-theories over finite approximations to this space. We obtain effective criteria for determining the invertibility of E-theory elements over possibly infinite-dimensional spaces. Furthermore, we prove a Universal Multicoefficient Theorem for C∗-algebras over totally disconnected metrisable compact spaces.
منابع مشابه
C∗-algebras over Topological Spaces: the Bootstrap Class
We carefully define and study C∗-algebras over topological spaces, possibly non-Hausdorff, and review some relevant results from point-set topology along the way. We explain the triangulated category structure on the bivariant Kasparov theory over a topological space and study the analogue of the bootstrap class for C∗-algebras over a finite topological space.
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملA K-theoretic Refinement of Topological Realization of Unstable Algebras
In this paper we propose and partially carry out a program to use K-theory to refine the topological realization problem of unstable algebras over the Steenrod algebra. In particular, we establish a suitable form of algebraic models for K-theory of spaces, called ψ-algebras, which give rise to unstable algebras by taking associated graded algebras mod p. The aforementioned problem is then split...
متن کاملC∗-algebras over Topological Spaces: Filtrated K-theory
We define the filtrated K-theory of a C∗-algebra over a finite topological space X and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of filtrated K-theory. For finite spaces with totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012